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Frontal Polymerization is a process that converts monomers into polymers by means
of a propagating spatially localized reaction front. Such fronts exist with free-rad-
ical polymerization, where in the simplest case, a mixture of monomers and initi-
ator is placed into a test tube and upon initiation of the reaction at one end of
the tube, a self-sustained wave develops and propagates through the tube. Isother-
mal Frontal Polymerization (IFP), often referred to as interfacial gel polymerization,
occurs due to the coupling of mass diffusion of the species and the gel effect. Uti-
lizing the free volume theory of Vrentas and Duda for describing the self-diffusive
behavior of the gel effect, we mathematically model and study this IFP process. We
determine, both numerically and analytically, characteristics of the process including
the propagation velocity of the reaction zone, the structure of the wave, and the
distance traveled by the front before it breaks down due to reactions ahead of the
front.

KEY WORDS: polymerization, mathematical modeling, isothermal frontal polymeri-
zation, gel effect
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1. Introduction

Frontal polymerization is a process that converts monomers into polymers
by means of a self-propagating wave. This front is a highly localized spatial reac-
tion zone which propagates through a mixture of monomers and initiator, leav-
ing polymers in its wake.
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The chemical mechanism for FP is usually free-radical polymerization,
which in the simplest case includes three kinetic steps: initiation, propagation,
and termination.

There are two modes of frontal polymerization: isothermal and thermal.
Thermal frontal polymerization is usually initiated by applying a heat source
at one end of a test tube. The temperature increase induces decomposition of
the initiator into active radicals allowing polymer chain growth to begin. The
chain growth, which occurs in a narrow region with sufficiently high tempera-
ture, releases more heat which diffuses into an adjacent layer of reactants induc-
ing decomposition of initiator there. In this way, a self-sustained reaction wave
can travel through the mixture. The increase in temperature can be as high as
200 K. The propagation of the wave is hence due to the exothermic chemical
reactions and heat diffusion. A review of experimental and theoretical works on
thermal frontal polymerization can be found in [1].

In an isothermal mode of polymerization, the propagation of the wave is
due to the mass diffusion of the species and the gel effect. The reaction typically
starts when a polymer seed, that is, a piece of polymer, is placed in contact with
a solution of its monomer and an initiator. The monomer swells the seed and
the gel region is formed. Polymerization occurs faster in the swelled viscous gel
than in the more fluid bulk medium. This causes the termination rate to severely
diminish. The result is an acceleration in the overall rate of polymerization and
hence an increase in the conversion of monomers. This phenomenon is called
the gel effect. Mass diffusion supplies the monomer molecules to the growing gel
region.

Often, due to the gel effect, the front is prevented to propagate due
to increased bulk polymerization. By adding a small but effective amount of
inhibitor, the radicals can also react with the inhibitor molecules. When this
occurs, the polymerization reaction is terminated. Inhibitors stop every rad-
ical, and polymerization is almost completely halted until the inhibitors are
consumed. Hence the front has the chance to propagate longer before bulk
polymerization causes its breakdown. It would be ideal to use an inhibi-
tor that works in the bulk but does not significantly penetrate into the gel
region.

Theoretical and experimental studies of isothermal frontal polymerization
have been performed in [2–12].

In this paper we consider a system that exhibits strong gel effect [13]. That
is, a system that leads to a nonideal behavior of drastically increasing polymer-
ization in the bulk. A classical example of such a system is with methyl meth-
acrylate (MMA) as the monomer, 2,2-azobisbutronitrile (AIBN) as the initiator,
and polymethyl methacrylate (PMMA) as the resulting polymer. (Poly)vinyl phe-
nol is often used as the inhibitor.
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2. Mathematical model

2.1. Basic mechanism

The following kinetic scheme summarizes the three basics steps (initiation,
propagation, termination) of free-radical polymerization [14]:

Initiation






I
kd−→ f 2R·

R · +M
ki−→ P1·

Propagation






P1 · +M
kp−→ P2·

P2 · +M
kp−→ P3·
· · ·

Pj · +M
kp−→ Pj+1·
· · ·

Termination
{

Pn · +Pm· ktg−→ P

In the above, I is the initiator species, R· is the primary radical, M is the
monomer species, Pj · is the polymer radical of length j , and the chemically inac-
tive polymer is P . All chemically active species are denoted with a dot besides
them. The term f is the efficiency of the initiator and typically has the value
of 0.5. The radicals are highly reactive and only a fraction of those formed by
decomposition are consumed by combination to monomer [13]; f is defined as
the quotient of R· that successfully initiate chains to the total R· formed.

The reaction rate constants, kj , depend on temperature of the system and
are written in the Arrhenius form as

kj = ko
j exp

(

− Ej

Rg T

)

for j = d, i, p, tg,

where ko
j is the frequency factor, Ej is the activation energy, and Rg is the univer-

sal gas constant. Though there is net heat production in the system, we assume
that the temperature T is constant due to efficient heat removal by heat losses to
the environment. Indeed, this assumption is accurate because the IFP process is
extremely slow; the propagation velocity of the front is of the order of 1 cm/day.
Thus, the decomposition, initiation, and propagation rate parameters, kd , ki , and
kp, respectively, are constant [13]. The termination rate parameter ktg is not con-
stant; it is a function of the degree of conversion of the monomer. The termina-
tion rate parameter models the gel effect as discussed later.
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2.2. Approximations and governing equations

We develop a one dimensional model of IFP. For the spatial region we con-
sider the interval 0 < x̃ < L, where L is the length of the tube along which the
front propagates.

The following system of equations describe the change in the concentration
of the species at time t̃ . The tilde denotes dimensional quantities.

dĨ

dt̃
= −kd Ĩ (1a)

dR̃·
dt̃

= 2f kd Ĩ − kiM̃R̃· (1b)

dM̃

dt̃
= −kiM̃R̃· − kpM̃P̃ · (1c)

dP̃ ·
dt̃

= kiM̃R̃· − 2ktgP̃ ·2 (1d)

dP̃

dt̃
= ktgP̃ ·2 (1e)

To describe the means of propagation in an isothermal system in entirety,
both mass diffusion of the species and gel effect must be included. Thus, we
include a diffusion term into equation (1c) to obtain

∂M̃

∂t̃
= DM

∂2M̃

∂x̃2
− kiM̃R̃· − kpM̃P̃ ·, (2)

where the diffusion coefficient, DM , is taken to be constant. This model does not
account for the diffusion of the other species. Indeed, assuming that it is uni-
formly distributed at the initial time, the initiator remains so at all times, and
thus we do not need to include a diffusion term in (1a). Next, the lifetime of
the primary radicals is relatively short and hence their diffusion is assumed neg-
ligible. We also neglect the diffusion of the larger molecules, namely the polymer
radicals and dead polymers, since such molecules diffuse very slowly relative to
the smaller monomer molecules.

To simply the analysis of the problem, we reduce the number of reaction
rate parameters in the problem by assuming ki = kp, an approximation justified
in [15]. As the concentration of R̃· is known to be much less than of P̃ · [15], we
sum equations (1b) and (1d), introduce a combined concentration of chemically
active radicals, D = R̃· + P̃ ·, and apply the assumption R̃· � P̃ ·.

To complete the formulation of the problem, we state the appropriate initial
and boundary data. Before initiation, there are no radical or polymer molecules
in the system and hence their initial concentrations is zero. The initial concentra-
tions of the initiator and monomer will be denoted by Io and Mo, respectively.
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To initiate the reaction, we assume a polymer seed is placed at one end of the
tube (x̃ = 0). To this end, we fill in the region 0 < x̃ < xo with a polymer sub-
strate which is free of monomer, while the remaining part xo < x̃ < L of the
initial mixture is filled with initiator and monomer. After initiation, the reaction
wave propagates toward the other end of the tube (x̃ = L) where we impose a
no-flux boundary condition on M.

Upon enforcing the above assumptions, the system of equations takes the
form

∂Ĩ

∂t̃
= −kd Ĩ , (3a)

∂D̃

∂t̃
= 2f kd Ĩ − 2ktgD̃

2
, (3b)

∂M̃

∂t̃
= DM

∂2M̃

∂x̃2
− kpD̃M̃, (3c)

∂P̃

∂t̃
= ktgD̃

2
, (3d)

subject to initial conditions

Ĩ (x̃, 0) = Io, M̃(x̃, 0) = Mo · H(x̃ − xo)

≡
{

Mo if x̃ > xo

0 if x̃ < xo
, D̃(x̃, 0) = 0, P̃ (x̃, 0) = 0, (4)

and boundary conditions

M̃(0, t̃) = 0,
∂M̃(L, t̃)

∂x̃
= 0. (5)

We make two further observations to clarify the problem. First, notice that
equation (3d) decouples from the remaining equations. Thus we restrict ourselves
to a study of equations (3a)–(3c), while P̃ , if needed, can be easily calculated
once D̃ is determined. Finally, equation (3a), subject to the initial condition in
(4) can be solved explicitly to give

Ĩ = Ioe−kd t̃ .

This reduces our problem to two coupled equations and corresponding data:

∂D̃

∂t̃
= 2f kdIoe−kd t̃ − 2ktgD̃

2
, (6)

∂M̃

∂t̃
= DM

∂2M̃

∂x̃2
− kpD̃M̃, (7)

D̃(x̃, 0) = 0, M̃(x̃, 0) = Mo · H(x̃ − xo), M̃(0, t̃) = 0,
∂M̃(L, t̃)

∂x̃
= 0.

(8)
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2.3. Gel effect

As the concentration of polymer chains in solution increases in the course
of reaction, the viscosity of the system increases. As a result, the long growing
chains find it difficult to find other long radicals to terminate, but they can more
easily find small monomers to continue to grow. This causes the termination rate
to drastically diminish. The outcome is a sharp increase in the overall polymer-
ization rate and hence the sudden increase in the conversion of monomers. This
phenomenon is known as the gel effect (also referred to as the Trommsdorff–
Norrish effect and autoacceleration effect). The gel effect can hence be described
in terms of the dependence of the rate of the termination reaction on the mono-
mer consumption.

Thus, in order to complete the formulation of our problem, we mathemat-
ically model the gel effect with the use of the termination rate parameter ktg.
Consider interaction of two polymer radical species resulting in a termination
reaction. The radicals need to diffuse to within a reaction distance from one
another for termination to occur. The diffusion process can be described in the
framework of the self-diffusion theory. This theory discusses, in particular, the
diffusion of polymer chains in a mixture of polymer and monomers, with a
dependence on the concentration of polymers. This theory [13] gives the follow-
ing expression for the termination rate parameter

ktg = ko
t

[
Dm(c)

Dmo

]β∗
(9)

In the above, Dm(c) is the polymer self-diffusion rate which depends on the poly-
mer concentration c, with Dmo ≡ Dm(0). The constant ko

t is the termination rate
coefficient, and β∗ is a parameter which is associated with the length of the poly-
mer radical chains. The longer the chain, the larger is β∗. Experimental data [13,
16] gives a general range of 2 < β∗ < 10.

An expression for the polymer self-diffusion rate as a function of temper-
ature and weight fractions of polymers and monomers in a mixture has been
derived using the free volume theory [17, 18]. This theory is based on the
idea that monomers and polymers can only move through the “free volume”
between one another. The rate of self-diffusion can be described using a statisti-
cal description of this free volume and is given by Dm:

Dm = Dmo · exp
[

− �

V̂FH

(
ωmV̂ ∗

m + ωp ξm,pV̂ ∗
p

)]

, (10)

where

V̂FH

�
= ωm

K1m

�m

(
K2m − Tgm + T

)+ ωp

K1p

�p

(
K2p − Tgp + T

)
. (11)
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In the above expressions, ωm and ωp are the weight fractions of monomer and
polymer, respectively. By the definition of weight fraction we have ωm + ωp = 1;
for convenience we re-denote η = ωp, and hence 1 − η = ωm. The V̂ ∗

m and V̂ ∗
p

are the specific volumes of the monomer and polymer, respectively, and ξm,p is
the molar size ratio of a monomer molecule to a polymer molecule. Next, V̂FH

is the total hole free volume available, and � is an overlap value that accounts
for the same free volume hole being available to more than one molecule. Also,
K1m and K2m are monomer free volume parameters, while K1p and K2p are poly-
mer free volume parameters. The glass transition temperature of the monomer
and polymer are Tgm and Tgp, respectively. The temperature of the system is as
before, T . The free volume theory parameters for the PMMA/MMA system are
given in table 1. Substituting (10) into equation (9), we obtain

ktg = ko
t · exp

[

−β∗
�

V̂FH

(
ωmV̂ ∗

m + ωp ξm,pV̂ ∗
p

)]

. (12)

Next, we use the parameter values given in table 1 to derive an explicit depen-
dence of the termination rate on η. First we note that equation (11) becomes

V̂FH

�
= ωm

K1m

�m

(
K2m − Tgm + T

)+ ωp

K1p

�p

(
K2p − Tgp + T

)

= (1 − η) (7.0 · 10−4) (−32.07 + 300)

+(η) (3.05 · 10−4) (−301 + 300) (13)

� 0.187551 (1 − η) (14)

Here we neglected the second term in (13) as compared to the first term. With
the appropriate substitutions, equation (12) can be reduced to

ktg = kt exp
[

− β

1 − η

]

(15)

Table 1
Parameters of the free volume theory for the PMMA/MAA system.

Parameter Values

V̂ ∗
m 0.872 cm3/g

V̂ ∗
p 0.788 cm3/g

K1m/�m 7.0 · 10−4 cm3/(K·g)
K1p/�p 3.05 · 10−4 cm3/(K·g)
K2m − Tgm −32.07 K
K2p − Tgp −301 K
T 300 K
ξm,p 0.59
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with

β = 2.5β∗, kt = ko
t exp(−2.2β∗).

3. Nondimensionalization

To solve the problem numerically, we first nondimensionalize the system of
equations. We define the nondimensional quantities as

D = D̃

D∗
, η = Mo − M̃

Mo

, t = t̃

t∗
, x = x̃

x∗
.

Note that η, which denoted the weight fraction of polymer, can be readily
defined as above. Initially, there is Mo concentration of monomers and no poly-
mers (η = 0); as time increases and all of the monomers are consumed, the
monomer species is fully converted to polymers (η = 1). Upon substitution of
the above and the definition (15) of ktginto equations (6) and (7), we arrive at
the following dimensional scales:

D∗ = 1
kp t∗

, x∗ =
√

DMt∗, t∗ =
(

kt

2kp
3f 2kd

2Io
2

)1/4

.

In addition, we introduce two small parameters and an inverse of one of them:

ε = kdt∗, γ = 1
kp t∗2 2 f kd Io

, k ≡ 1
γ

.

From equations (6) and (7) and the above definitions, we obtain the following
corresponding nondimensional equations

γ
∂D

∂t
= e−εt − ke− β

1−η D2, (16)

∂η

∂t
= ∂2η

∂x2
+ D (1 − η) , (17)

subject to the initial conditions

D(x, 0) = 0, η(x, 0) = H(xo − x), (18)

and the boundary conditions

η(0, t) = 1,
∂η(L, t)

∂x
= 0. (19)

Important parameters to keep in mind are γ , k, ε, and β. The numerical values
of these parameters depend on the choice of reactants and their kinetic prop-
erties. Extensive tabulated values of activation energies, preexponential factors,
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and other kinetic parameters for various initiators and monomers can be found
in [19].

Equation (16) gives a rate balance of D, the total nondimensional concen-
tration of radicals. In the right hand side of the equation, the first term describes
the rate of creation of D (which is equal to the rate of decomposition of the ini-
tiator I ), and the highly nonlinear second term describes the rate of termination
of D. The small magnitude of γ indicates that we will have a stiff problem as it
multiplies a time derivative. Equation (17) is an evolution equation for η; there
exists a diffusion term and a reaction term. Equations (16)–(19) represent a com-
plete formulation of the nondimensional problem.

4. Results

4.1. Numerical results

The nondimensional system (16)–(19) was solved numerically for several
values of β and γ with fixed small parameter ε. As the solution evolves on
different timescales (a very fast timescale for D because of the rapid radical–
radical reactions and a slower timescale for η), this presents a stiff problem. We
used the Method of Lines to obtain a system of ordinary differential equations
and solved it using the stiff solver “ode15s” of MATLAB which automatically
chooses the appropriate timesteps depending on the stiffness of the problem.

The spatial profiles of the degree of conversion η are shown in figure 1
at equally spaced values of time. A slowly-varying traveling wave is seen. The
leftmost curve represents the initial condition imposed on η. As time evolves,
we observe a propagating front moving to the right. At any given point on the
x-axis, η(x, t) moves away from η = 0 and approaches η = 1; the product region
where η = 1 grows with time. Even far ahead of the reaction zone, in the bulk
region, there is an increase in the conversion of monomer as the front progresses.
This eventually causes the breakdown of the front. The solution is slowly-vary-
ing since there exist two timescales in the problem: polymerization at the front,
where the degree of conversion is high, occurs on a fast time scale, while poly-
merization in the bulk, where the degree of conversion is relatively small, occurs
on a slower time scale.

Figures 2–4 shows various nondimensional plots of the solution to the full
problem (equations (16)–(19)) at a fixed time. In particular, figure 2(b) shows the
radical concentration profile. Ahead of the front, in the bulk, there is almost no
reaction, so only a small quantity of reactive radicals exist and for those pres-
ent, they are consumed as fast as they are created. But behind the front, there
is a much larger concentration of the radicals. This provides testimony to exis-
tence of the gel effect. As the reaction progresses, the termination rate drastically
diminishes, increasing the radical concentration.
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Figure 1. The curves display the spatial profiles of the degree of conversion of the monomer at
equally spaced values of time for a reaction without inhibitor.

Table 2 states one set of values that we tested on our model. These param-
eters are used for all figures unless noted otherwise.

4.2. Analytical results

Since the characteristic scale of the reaction zone is much smaller than a
typical length of a test tube, in our analytical studies, we consider the tube to
be infinite and take the spatial domain as −∞ < x < +∞. Thus, we seek solu-
tions of (16), (17) for t > 0, −∞ < x < +∞ subject to the conditions

D(x, 0) = 0, η(x, 0) = H(−x), (20)

η(x, t) = 1 as x → − ∞,
∂η(x, t)

∂x
= 0 as x → ∞. (21)

Note that the xo introduced earlier is equal to zero. Introducing two-timing with
a fast time scale t and a slow scale τ = εt (with ε � 1), we can write the system
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Figure 2. The plots display the spatial profiles of the degree of conversion of monomers and the
concentration of radicals, respectively, at a fixed time over the full interval.
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Figure 3. The plots display the spatial profiles of the reaction term and the rate of termination
of radical (quantified by the last term of equation (16)), respectively, at a fixed time over the full

interval.
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Figure 4. The plot displays the spatial profile of the rate of change of the concentration of radicals
(quantified by the first term of equation (16)) at a fixed time over the full interval.

Table 2
Parameter values for the PMMA/MAA system with AIBN as initiator.

Parameter Values

kd 1.45 · 10−6 1/s
kp 522 l/(mol·s)
kt 4.82 · 1011 l/(mol·s)
Io 0.001 mol/l
Mo 9.0 mol/l
DM 1 · 10−6 cm2/s
f 0.5
β 5
ε 2.27 · 10−2

γ 1.02 · 10−5

k 9.82 · 104
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(16), (17), (20), (21) in the form

γ

(
∂D

∂t
+ ε

∂D

∂τ

)

= e−εt − k e
−β

1−η D2, (22)

∂η

∂t
+ ε

∂η

∂τ
= ∂2η

∂x2
+ D (1 − η) , (23)

D(x, 0, 0) = 0, η(x, 0, 0) = H(−x), (24)

η(x, t, τ ) = 1 as x → − ∞,
∂η(x, t, τ )

∂x
= 0 as x → ∞. (25)

We seek a solution to leading order in ε.

4.2.1. Bulk polymerization
We first discuss the polymerization process in the bulk region, far from the

reaction zone as x → +∞. Here we seek the value of the degree of conversion
ηb and the radical concentration Db as a function of slow time τ . These limiting
values of the concentrations do not depend on x so we can set ∂2η/∂x2 = 0 in
(23). We also apply the steady-state assumption [14] which corresponds to setting
the time derivatives in equation (22) to zero. In explanation, the highly reactive
radicals in the bulk are consumed as fast as they are created. Hence the rate bal-
ance for D is assumed to be zero. Implementing these assumptions to the system
(22)–(25) results in the following initial value problem:

e−τ = ke
−β

1−ηb D2
b, (26)

ε
dηb

dτ
= Db (1 − ηb) , ηb(0) = 0. (27)

We solve equation (26) for Db and substitute the result into equation (27) to
obtain

ε
dηb

dτ
= eτ/2 1√

k
exp

(
β/2

1 − ηb

)

(1 − ηb) . (28)

By separating variables in (28) and integrating, we obtain

∫ ηb

0

exp
(

−β/2
1−η

)

1 − η
dη = 1

ε
√

k

∫ τ

0
e−τ/2dτ.

Making the change of variable ξ = β/2
1−η

in the first integral gives

∫ β/2
1−ηb

β/2

e−ξ

ξ
dξ = 1

ε
√

k

∫ τ

0
e−τ/2dτ.
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We can determine the time, τf , needed for the reaction to come to completion
(that is, when the monomer is completely consumed by the reaction), by apply-
ing the limit ηb → 1 to get

E1

(
β

2

)

= 2

ε
√

k

(
1 − e−τf /2) , (29)

where

E1(z) ≡
∫ ∞

z

e−r

r
dr,

is known as the exponential integral [20]. For sufficiently large β the left-hand
side of (29) is small. Thus, the right-hand side of (29) and, therefore, τf must be
small. Expanding the exponential for small τf yields the completion time as

τf ≈ ε
√

k E1

(
β

2

)

.

There is also a lower limit for β under which the reaction stops not due to
the complete consumption of the monomer, but of the initiator and deemed as
“initiator burnout”. This case corresponds to an “infinite” time of completion
τf . Taking the limit τf → ∞ in (29), we observe that β must be greater than β∗
determined by

ε
√

k

2
E1

(
β∗
2

)

= 1.

For the base parameter values in Table 2 we obtain β∗ = 1.71.

4.2.2. Frontal polymerization
We now return to the system (22)–(25). We seek a solution in the form of

a slowly-varying right traveling wave and introduce a moving coordinate system

z = x −
∫ t

0
c ds,

where the nondimensional propagation speed c = c(εt) is a function of the slow
time, and the front is always located at z = 0. The leading order in small ε solu-
tion of (22)–(23), for which we retain the notation η(z, τ ) and D(z, τ), satisfies
the system of equations

−γ c(τ)
dD

dz
= e−τ − ke

−β

1−η D2, D(+∞) = Db, (30)

d2
η

dz2
+ c(τ )

dη

dz
+ D (1 − η) = 0, η(−∞) = 1, η(+∞) = ηb. (31)
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Numerical results suggest the direction to take to approximate an analytic solu-
tion. Figures 2–4 show various plots of the solution to the full problem (equa-
tions (16)–(19)). Since some of the graphs exhibit rapid variations over a certain
spatial region, we show in figures 5–7 the corresponding stretched spatial region.

First, we observe that the reaction zone (figure 6(a)) is narrow compared
to the scale of variation of η (figure 5(a)). The reaction zone consists of two
parts: left and right of the maximum value. The right part of the reaction zone is
shorter than the left part thus introducing the smallest spatial scale in the prob-
lem. Next, there is an important change in the behavior of D (figure 5(b)) that
occurs over the right part of the reaction zone. This change can be attributed to
a change in the relative significance of the terms in equation (30). Figures 6(b)
and 7 indicate that to the right of the reaction zone, the dominant balance in
(30) is due to the second and third terms of the equation (which simply means
that the steady state approximation is applicable in this region). In the left part
of the reaction zone, the dominant balance is due to the first and second terms
of the equation (the termination rate is negligible due to the gel effect, so a lin-
ear growth of the radical concentration is observed). Since the scale of the right
part of the reaction zone is the smallest, in our approximation of the solution,
we shrink it to a point. Since the problem is invariant with respect to transla-
tions in z, we will take this point to be z = 0. To the right of this point, we
solve a reactionless equation for η and use the steady state approximation in
the D-equation. To the left of this point, we use the other simplification of the
D-equation. Thus, we solve the following problem. For z > 0, we solve

0 = e−τ − ke
−β

1−η D2, (32)
d2

η

dz2
+ c(τ )

dη

dz
= 0 (33)

subject to the boundary condition

η(+∞) = ηb.

For z < 0, we solve

−γ c(τ)
dD

dz
= e−τ , (34)

d2
η

dz2
+ D (1 − η) = 0 (35)

subject to the boundary condition

η(−∞) = 1.

Note that the first derivative term is omitted in equation (35); as the left part of
the reaction zone is narrow, the second derivative term is more important than
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Figure 5. The plots display the spatial profiles of the degree of conversion of monomers and the
concentration of radicals, respectively, at a fixed time over a stretched spatial region.
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Figure 6. The plots display the spatial profiles of the reaction term and the rate of termination of
radical (quantified by the last term of equation (16)), respectively, at a fixed time over a stretched

spatial region.
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Figure 7. The plot displays the spatial profile of the rate of change of the concentration of radicals
(quantified by the first term of equation (16)) at a fixed time over a stretched spatial region.

the first derivative term. We match these solutions at z = 0 in such a way that
D, η and dη/dz are all continuous. An additional condition that we impose on
the solution is that the maximum value of the reaction rate is attained at z = 0,
i.e.,

d
dz

[D (1 − η)]|z=0− = 0. (36)

Introducing the notation

η(0) = η∗, D(0) = D∗, (37)

where η∗ and D∗ are two unknown quantities related by

e−τ = ke
−β

1−η∗ D2
∗ (38)
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(see (32)), we obtain upon solving (32)–(35)

η(z) =
{

ηb + (η∗ − ηb)e−cz, z > 0
1 − (1 − η∗)Ai(αD∗ − α−1/2z)/Ai(αD∗), z < 0

, (39)

D(z) =
{

γ e−τ eβ/(1−η(z)), z > 0
D∗ − α−3/2z, z < 0

, (40)

where Ai is the Airy function and

α = (γ ceτ )2/3. (41)

To derive the solutions (39) and (40), we used the boundary conditions at
±∞ and the continuity conditions for η and D at z = 0. The remaining match-
ing condition, which constitutes the continuity of dη/dz at z = 0 takes the form

(1 − η∗)α−1/2 Ai′(αD∗)
Ai(αD∗)

= −c(η∗ − ηb). (42)

Thus, we have three equations (36), (38), and (42) for the three unknowns: η∗,
D∗ and c.

Substituting the solution for η and D into (36), we obtain upon some sim-
plifications

Ai(αD∗) + αD∗Ai′(αD∗) = 0, (43)

from which

αD∗ ≈ 0.9. (44)

Using (43), (44) we reduce (42) to

(1 − η∗)α−1/2 = 0.9c(η∗ − ηb). (45)

Substituting D∗ found from equation (38) in terms of η∗, and α given by (41)
into (44) and (45), we obtain

1 − η∗ = 0.9c(η∗ − ηb)(γ ceτ )1/3, (46)
[
γ e−τ e

β

1−η∗
]1/2

= (γ ceτ )−2/3. (47)

Thus, the problem has boiled down to solving the two equations (46) and (47)
for the two unknowns c and η∗. Upon simple manipulations we obtain an equa-
tion for c in terms of η∗ and an equation for η∗

c = 1
γ 1/4

(
1 − η∗
η∗ − ηb

)3/4

e−τ/4, (48)

1 − η∗
η∗ − ηb

= 0.7
1
γ 2

e− β

1−η∗ . (49)
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An approximate solution of equation (49) for η∗ has the form

η∗ = 1 − β

2 ln 1
γ

+ ln
(

2
β

ln 1
γ

) ,

which, upon substitution in (48), yields

c = 1
γ 1/4




β

(1 − ηb)
[
2 ln 1

γ
+ ln

(
2
β

ln 1
γ

)]
− β





3/4

e−τ/4. (50)

5. Discussion

As we can see from (50), the speed of the wave depends on the termination
rate parameters, in particular on β. Specifically, the steeper it is (so β increases),
the faster it moves. The wave front moves to the right with a velocity of about β3/4.

Figure 8 shows the propagation velocity of the wave as a function of β

using analytic results and numerical simulations. Also shown within each fig-
ure is a comparison of the velocity for varied γ values. Observe in (50) that
c ∝ γ −1/4, that is, the velocity decreases with increasing γ . The graphs demon-
strate the accuracy of the analytical approximations. The general trends of the
analytical results qualitatively match the numerical solution of the full problem
for the propagation velocity and further imply that they are consistent with any
assumptions or approximations taken.

In figure 9 we graph the propagation velocity as a function of time for var-
ious γ values. The curves shows that the propagation velocity of the polymeri-
zation wave is mainly constant. But there is a slight increase in the velocity for
increasing γ , as shown in figure 9.

6. Mathematical model with inhibition

6.1. Basic mechanism

As discussed earlier, the breakdown of a propagating front occurs due to
bulk polymerization. In order to affect the polymerization in the bulk, an inhib-
itor species can be added to the initial mixture. The inhibitor reacts with grow-
ing polymer chains terminating polymerization. Thus, the inhibitor slows down
bulk polymerization, letting the front propagate longer. On the other hand, if the
inhibitor is able to penetrate the front, it affects the reactions at the front and
slows down the front. Below we consider the situation in which small amount
of a strong inhibitor (that is able to penetrate the front) is added to the initial
mixture.
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Figure 8. Nondimensional analytical and numerical propagation velocity of the polymerization
wave as a function of β for various γ . The top curves correspond to the smallest γ values.
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Figure 9. Nondimensional propagation velocity of the polymerization wave as a function of time
for various γ . The top curves correspond to the smallest β values.

We again consider the kinetic scheme summarizing IFP as given in Sec-
tion 2.1, but now adding an inhibition reaction

Initiation






I
kd−→ f 2R·

R · +M
ki−→ P1·

Propagation






P1 · +M
kp−→ P2·

P2 · +M
kp−→ P3·
· · ·

Pj · +M
kp−→ Pj+1·
· · ·
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Termination
{

Pn · +Pm· ktg−→ P

Inhibition
{

Pn · +S
ks−→ Y

Here S denotes the inhibitor species, Y the product(s) of the inhibition reac-
tion (being either nonradical species or radicals of reactivity too low to undergo
propagation), and ks the reaction rate for the inhibition chemical equation.

The corresponding system of equations is

∂Ĩ

∂t̃
= −kd Ĩ (51)

∂D̃

∂t̃
= 2f kd Ĩ − 2ktgD̃

2 − ksD̃S̃ (52)

∂M̃

∂t̃
= DM

∂2M̃

∂x̃2
− kpD̃M̃ (53)

∂P̃

∂t̃
= ktgD̃

2
(54)

∂S̃

∂t̃
= −ksD̃S̃ (55)

∂Ỹ

∂t̃
= ksD̃S̃ (56)

with initial conditions

Ĩ (x̃, 0) = Io, M̃(x̃, 0) = Mo · H(x̃ − xo), S̃(x̃, 0) = So,

D̃(x̃, 0) = 0, P̃ (x̃, 0) = 0, Ỹ (x̃, 0) = 0

and boundary conditions for the monomer concentration as

M̃(0, t̃) = 0,
∂M̃(L, t̃)

∂x̃
= 0.

Thus, we assume that the inhibitor and initiator are uniformly distributed in the
initial mixture. And as before, we fill in the region 0 < x̃ < xo with a polymer
substrate which is free of monomer, while the remaining part xo < x̃ < L of the
initial mixture is filled with monomer. The above system is derived in the same
manner as equations (3a)–(3d) using the same simplifying assumptions as in Sec-
tion 2.1, and the definition of the termination rate is as given in Section 2.3. As
before, because the current study is not concerned with the product states, we
only study equations (51)–(53) and (55), but if needed, can determine the prod-
ucts once D̃ and S̃ are determined. As was in the case for the noninhibited poly-
merization process, Ĩ can be solved for explicitly in (51) and substituted into
(52).
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6.2. Nondimensionalization

Using the same nondimensional quantities as before and also including

S = S̃

So

, Z = ks

kp

, λ = γZSo

D∗

we obtain from equations (51)–(56) the nondimensional system

γ
∂D

∂t
= e−εt − ke

−β

1−η D2 − λDS (57)

∂η

∂t
= ∂2η

∂x2
+ D (1 − η) (58)

∂S

∂t
= −ZDS (59)

D(x, 0) = 0, η(x, 0) = H(xo − x),

S(x, 0) = 1, η(0, t) = 1,
∂η(L, t)

∂x
= 0. (60)

The potential for the inhibition of polymerization is inherent in the param-
eters Z and So. Here Z, the ratio of inhibition rate to the propagation rate, is a
nondimensional measure of the strength of the inhibitor; if Z � 1, for example,
we say the inhibitor is strong. So is the dimensional initial concentration of the
inhibitor. An inhibitor that is strong yet present in too small of an amount will
suppress the polymerization for only a very short period of time. On the other
hand, an inhibitor that is weak yet abundant in its concentration may retard the
polymerization for a longer period of time, but less effectively. The numerical
values of Z depend on the choice of inhibitor and are experimentally known. A
commonly used strong inhibitor is oxygen, with Z = 33000. Note that in the
case Z = 0, the system is reduced to the one without inhibition and discussed in
the previous sections.

The appearance of the parameter λ present in equation (57) pertains to the
consumption of the radicals due to inhibition. Note that it is proportional to Z.
In the right hand side of (57), the first term describes the rate of creation of D

(which is equal to the rate of decomposition of the initiator I ), and second and
third terms describe the rate of annihilation of D, either by termination or inhi-
bition, respectively. The evolution of η is given by equation (58) and the con-
sumption of the inhibitor is given by equation (59). Hence, equations (57)–(60)
and the parameters discussed above complete our formulation of the problem.

6.3. Numerical results

Following similar analysis to the case without inhibition, we use the
Method of Lines to get the numerical solution of the reduced problem
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(57)–(60). In Figure 10, the degree of conversion profiles at selected times are
shown.

Recall that figure 1 shows the numerical solution for the uninhibited sys-
tem. In both cases, the increase in the degree of conversion ahead of the front
indicates the existence of bulk polymerization. As anticipated, figure 10 shows
the solution to have limited polymerization in the bulk. Hence, by adding an
inhibitor to the system, polymerization of the monomer is suppressed, increas-
ing the life-time of the propagating wave.

6.4. Analytical results

6.4.1. Bulk Polymerization
As before, we apply the steady state assumption to the radical equation and

solve for S in closed form. We also neglect the diffusion term in the monomer
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Figure 10. The curves display the spatial profile of the degree of conversion of the monomer at
equally spaced values of time for a reaction with inhibitor.
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equation to obtain

Sb = 1
λDb

(

e−εt − k e
−β

1−ηb Db
2
)

(61)

dηb

dt
= Db (1 − ηb) (62)

dSb

dt
= −ZDbSb (63)

ηb(0) = 0, Sb(0) = 1. (64)

Upon substitution of (61) into equation (63), the evolution of the radicals can
be written as

dDb

dt
=

ZDb
2
(

e−εt − ke
−β

1−ηb Db
2
)

− εe−εtDb + kβDb
4e

−β

1−ηb /(1 − ηb)

e−εt + ke
−β

1−ηb Db
2

. (65)

Substituting the initial conditions (64) into equation (61) we obtain the initial
condition for Db:

Db(0) = λ

2ke−β

[√

1 + 4ke−β

λ2
− 1

]

. (66)

The new governing system is given by (65) and (66) for the radicals, with the
unchanged (62) and (64) for the degree of conversion. Next, we make the change
of variables

Db = 1√
k

e
β/2

1−ηb yb (67)

motivated by the inhibition-free system in section 4.2.1. The radical concentra-
tion in the absence of inhibitor given by equation (26) is

Db = 1√
k

e
β/2

1−ηb e−εt/2.

In the presence of inhibitor, the radical species can also react with the inhibitor
molecules causing the polymerization reaction to terminate. Thus, we expect a
decrease in the radicals so that for Z = 0 (no inhibition), yb = e−εt/2, while for
Z > 0, yb � e−εt/2.
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By introducing the above change of variables (67) and a slow time scale τ =
εt , the system of equations takes the form

dyb

dτ
= − β/2

ε(1 − ηb)

e
β/2

1−ηb√
k

yb
2

+
Z e

β/2
1−ηb√

k
yb

2
(
e−τ − yb

2
)− εe−τ yb + β e

β/2
1−ηb√

k
yb

4/(1 − ηb)

ε
(
e−τ + yb

2
) (68)

dηb

dτ
= e

β/2
1−ηb√

k
yb

1 − ηb

ε
(69)

yb(0) = λeβ/2

2
√

k

[√

1 + 4k

λ2eβ
− 1

]

≡ yo (70)

ηb(0) = 0 (71)

The system (68)–(71) was solved numerically for several values of Z and β. The
“reduced” radical concentration yb as a function of the slow time is shown in
figure 11 for β = 5 and various values of Z.

If Z = 0, then the solution follows the upper bound yb(τ ) =
e−τ/2, described previously. In this noninhibited system, the amount of radicals
decrease steadily as radical species are consumed by the propagation step. For
values of Z � 1, the solution shows a nonexistent or relatively small radi-
cal population initially but at some critical time indicates a sudden increase in
the radical species. This is indicative of the effectiveness of the inhibitor as it
reacts with the radical species and almost completely halts polymerization. At
this critical point, the inhibitors are consumed and a front will be formed as
the polymerization of the monomers resume. Past this critical value of time, the
solution exhibits an asymptotic behavior toward the upper bound. When Z takes
on intermediate values, the solution initially exhibits some increase in the radi-
cals but eventually decays exponentially. This results from a weak inhibitor that
retards the polymerization less effectively but for a longer period of time.

To necessitate strong inhibition we must have Z � 1. Hence, until other-
wise stated, the following analysis is restricted for Z � 1. As suggested by the
results in figure 11, there exists a critical time τo separating the inhibited and
noninhibited regimes. Define τo to be the value of τ at which inhibition stops
and propagation resumes, that is, the time when the inhibitor has been com-
pletely consumed. In order to determine an analytic value of τo , we make two
assumptions based on numerical results to simplify the problem (68)–(71). First,
note that for τ < τo , yb

2 � e−τ (see figure 11) and so we neglect yb
2 as com-

pared to e−τ . Second, for τ < τo , ηb is negligible, as the presence of inhibition
implies no conversion of monomers.
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Figure 11. The plots display the nondimensional radical concentration profiles in the bulk region
as a function of slow time for various Z. The reaction without inhibitor corresponds to the curve

represented by Z = 0.

For Z � 1 and τ < τo , enforcing these simplifications into equations (68)–
(71) yields the system of two equations, where one equation decouples from the
other:

dyb

dτ
= −β

2
eβ/2

ε
√

k
yb

2 + Z
eβ/2

ε
√

k
yb

2 − yb + β
eβ/2

ε
√

k
yb

4eτ , yb(0) = yo (72)

dηb

dτ
= eβ/2

ε
√

k
yb, ηb(0) = 0. (73)

Next, we further reduce the above equations by only keeping the terms which
will substantially contribute to their solution. In particular, consider the right
hand side of equation (72). In the inhibited region, figure 11 shows yb � 1, and
hence it follows that y4

b � y2
b . Therefore, we neglect the last term on the right

hand side of (72) as compared to the first term. Also, since we are under the
assumption Z � 1, the value of β/2 is negligible compared to Z. This suggests
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that the first term be neglected as compared to the second term. Applying these
assumptions to equation (72) we obtain

dyb

dτ
= ZKyb

2 − yb, yb(0) = yo (74)

where K ≡ eβ/2

ε
√

k
. The solution of this problem is

yb(τ ) = yo

ZKyo + (1 − ZKyo)eτ
. (75)

Next, we can simplify the expression for yo using the fact that 4k/(λ2eβ) � 1 and
expanding the square root to obtain

yo = λeβ/2

2
√

k

[

1 + 1
2

4k

λ2eβ
+ · · · − 1

]

≈
√

k

λeβ/2
= 1

Z K

2f Io

So

(76)

= 1
Z

2
√

f kdktIo

eβ/2kpSo

≡ 1
Z

h. (77)

Imposing the approximation (76) in the denominator and (77) in the numerator
of solution (75), we get

yb(τ ) = h/Z

2f Io/So + (1 − 2f Io/So)eτ
. (78)

Figure 11 shows a vertical asymptote of yb(τ ) as τ → τo. This behavior is inter-
preted as the increase in radical concentration due to the end of the inhibition
period. Setting the denominator of (78) to zero to obtain τo yields

τo = − ln
[

1 − So

2f Io

]

. (79)

An important observation should be made about (79). There is a critical
value of the initial inhibitor concentration So given by (So)cr ≡ 2f Io. In the
supercritical case, where So > (So)cr , τo is undefined. The denominator of (78)
remains positive and hence yb monotonically decreases as time increases. In the
critical case of So = (So)cr , yb = 1/(ZK), a very small constant. Note that as
So → (So)cr , then τo → ∞. This analysis reveals that large values of So assure
that a strong inhibitor is never consumed. But the most interesting is the sub-
critical case where So < (So)cr . We can approximate the step-like behavior (see
figure 11) of the radicals by

yb(τ ) =
{

yo τ < τo

e−τ/2 τ > τo
. (80)
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For this subcritical case, the process of chemical conversion in the bulk is no
longer negligible for τ > τo . Equations (69) and (71) can be reduced in this case
using (80) to the initial value problem

dηb

dτ
= e

β/2
1−ηb

ε
√

k
(1 − ηb)e−τ/2, ηb(τo ) = 0. (81)

Note that the above initial condition means that we take ηb = 0 for all τ < τo

due to negligible monomer conversion during the inhibition period. We can now
determine at what time τf the reactions will stop. In this case, it occurs due
to the full conversion of monomers. Separating variables in (81) and integrating
from τ = τo , ηb = 0 to τ = τf , ηb = 1 we obtain

E1

(
β

2

)

= 2

ε
√

k

(
e−τo/2 − e−τf /2) . (82)

Hence, for large β, we can write

τf ≈ ε
√

kE1

(
β

2

)

.

A lower bound can be established on β. From (82)

ε
√

k

2
E1

(
β

2

)

� 1

and, solving for β in this inequality, we numerically determine the lower bound
as β � 1.71. Similar to the inhibition-free study, if values of β smaller than the
numerical lower bound are chosen, then the reaction stops due to the “burnout”
of the initiator. That is, polymerization is quenched due to the complete con-
sumption of the initiators, and gel effect in the bulk region never occurs.

6.4.2. Frontal polymerization
Adding a small amount of a strong inhibitor to the system simply delays

the process of polymerization by time τo and modifies the initial initiator con-
centration. Otherwise, our results on frontal polymerization without inhibition,
discussed in Section 4.2.2, hold.

7. Conclusion

In this paper we discuss the propagation of an isothermal polymerization
front due to coupling of the gel effect and mass diffusion of the monomer. The
gel effect is modeled via a dependence of the termination rate on the degree of
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conversion of the monomer. In the previous work [4] this dependence was mod-
eled in an ad hoc fashion by using a step-wise function. Here we use the exper-
imental data in [13,16] and free volume theory approach [17,18] to derive the
dependence of the termination rate on the degree of conversion.

The qualitative behavior of the front was successfully modeled as shown by
the numerical solution of the full problem. The main features of the solution are
the appearance of slowly-varying traveling waves and a possible breakdown of
the front due to bulk polymerization. The systems with and without an inhibi-
tor have been considered. The main effect of a strong inhibitor present in small
amounts is a delay in formation of the polymerization front.

Quantitative characteristics of the model, such as the propagation velocity
of the front was calculated using analytical procedures. Comparison of the ana-
lytical and numerical results is satisfying.

Acknowledgment

This research has been supported in part by NSF grants DMS-0103856 and
CTS-0138712.

References

[1] M.F. Perry and V.A. Volpert, J. Eng. Math. 49 (2004) 359.
[2] B. Smirnov, S.S. Minko, I. Lusinov, A. Sidorenko, E. Stegno and V. Ivanov, Polym. Sci. 35

(1993) 423.
[3] V. Golubev, D. Gromov and B. Korolev, J. Appl. Polym. Sci. 46 (1992) 1501.
[4] C. Spade and V. Volpert, Mathematic. Comp. Model. 30 (1999) 67.
[5] C. Spade and V. Volpert, Macromol. Theory Simul. 9 (2000) 26.
[6] D. A. Schult, C. A. Spade and V. A. Volpert, Appl. Mathematics Lett. 15 (2002) 749.
[7] V. Ivanov and E. Stegno, Polym. Sci. Ser. B 37 (1995) 50.
[8] V. Ivanov, E. Stegno and L. M. Pushchaeva, Chem. Phys. Rep. 16 (1997) 947.
[9] J. Masere, L. Lewis and J. Pojman, J. Appl. Polym. Sci. 80 (2001) 686.

[10] L. Lewis, C. DeBisschop, J.A. Pojman and V. Volpert, in: Nonlinear Dynamics in Polymeric Sys-
tems, eds. J. Pojman and Q. Tran-Cong-Miyata (American Chemical Society, Washington, DC,
2003), pp. 69–183.

[11] V. Ivanov, E. Stegno and L.M. Pushchaeva, Polym. Sci. Ser. A 44 (2002) 1017.
[12] Y. Koike, in: Polymers for Lightwave and Integrated Optics, ed. L.A. Hornak (Marcel Dekker,

New York, 1992), pp. 71–104.
[13] B.P. Chekal, Understanding the Roles of Chemically-Controlled and Diffusion-Limited Pro-

cesses in Determining the Severity of Autoacceleration Behavior in Free Radical Polymeriza-
tion, Ph.D. thesis, Northwestern University (2002).

[14] G. Odian, Principles of Polymerization, 2nd edition, (Wiley-Interscience, New York, 1981).
[15] C. Spade and V. Volpert, Chem. Eng. Sci. 55 (2000) 641.
[16] B.P. Chekal and J.M. Torkelson. Macromolecules 35 (2002) 8126.
[17] J.S. Vrentas and J.L. Duda, J. Polym. Sci. Pol. Phys. 15 (1977) 403.
[18] J.S. Vrentas and J.L. Duda, J. Polym. Sci. Pol. Phys. 15 (1977) 417.



D.E. Devadoss and V.A. Volpert / Isothermal frontal polymerization 105

[19] J. Brandrup and E. Immergut, Polymer Handbook (John Wiley and Sons, New York, NY,
1982).

[20] M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions, (National Bureau of
Standards, 1964).


